पृष्ठम्:गणितसारसङ्ग्रहः॒रङ्गाचार्येणानूदितः॒१९१२.djvu/३२७

एतत् पृष्ठम् परिष्कृतम् अस्ति
121
CHAPTER VI--MIXED PROBLEMS.

are to be divided (one after another) by an optionally chosen number (and the remainders again are to be divided by an optionally chosen number, this process being repeated) over and over again. The given (mixed) quantities of the different things are to be (successively) diminished by the corresponding quotients in the above process. (In this manner the numerical values of the various things in the mixed sums are arrived at). The optionally chosen divisors (in the above processes of continued division ) combined with the optionally chosen multiplier as also that multiplier constitute (respectively) the prices (of a single thing in each of the varieties,of the given different things).

 

 

Choose any optional number, say 2, and multiply with it these total numbers; we get 42, 44, 46. Subtract these from 73, the price of the respective heaps. The remainders are 31, 29, and 27. These are to be divided by another optionally chosen number, say 8. The quotients are 3, 3, 3, and the remainders are 7, 5 and 3. These remainders are again divided by a third optionally chosen number say 2. The quotients are 3, 2, 1, and the remainders are 1, 1, 1. These last remainders are in their turn divided by a fourth optionally chosen number which is 1 here. The quotients are 1, 1, 1 with no remainders. The quotients derived in relation to the first total number are to be subtracted from it. Thus we get ; this number and the quotients 3, 3, 1 represent the number of fruits of the different sorts in the first heap. Similarly we get in the second group 16, 3, 2, 1, and in the third group 18, 3, 1, 1, as the number of the different sorts of fruits.

The prices are the first chosen multiplier, viz., 2, and its sums with the other optionally chosen multipliers. Thus we get 2, 2 + 8 or 10, 2 + 2 or 4, and 2 + 1 or 3, as the price of each of the four different kinds of fruits in order.

The principle underlying this method will be clear from the following algebraical representation:-

     
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
     
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II
Let w = s.
Multiplying II by s, we have
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III
Subtracting III from I, we get
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV

Dividing IV by , we get a as the quotient, and as the remainder, where is a suitable integer.

Similarly we proceed till the end.

Thus it will be seen that the successively chosen divisors , and , when combined with s,give the value of the various prices, s by itself being the price of the first thing; and that the successive quotients a, b, c, along with are the numbers measuring the various kinds of things.

It may be noted that, in this rule, the number of divisions to be carried out is one less than the number of the kinds of things given, and that there should be no remainder left in the last division.